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LElTER TO THE EDITOR 

New inverses of the attenuated Abel integral equation 

Moshe Deutscht 
Gordon McKay Laboratory, Harvard University, Cambridge, MA 02138, USA 

Received 20 August 1984, in final form 8 October 1984 

Abstract. Abel’s integral equation relates the line-of-sight radiance to the emission 
coefficient distribution function of an extended, cylindrically symmetric transparent radi- 
ation source. In the presence of absorption this equation is modified. We present here 
two new inversion formulae for this attenuated Abel equation for the case of constant 
absorption throughout the source. As one of them is completely derivative-free and the 
other requires differentiation of a weighted integral over the radiance rather than a 
differentiation of the radiance function itself, they are particularly well suited for use with 
measured radiance data, where differentiation invariably results in a very large amplification 
of the random experimental error inherent in the data. An illustrative example is also given. 

Inversion of Abel’s integral equation (Anderssen 1973, Buck 1974, Cremers and 
Birkeback 1966) is an essential step in the analysis of measured data in numerous 
fields of research. In flame and plasma diagnostics (Barr 1962), for example, Abel’s 
equation relates the measured line-of-sight radiance of a cylindrically symmetric source 
to its emission coefficient distribution. If the source is optically thin so that no 
absorption occurs within the source, the measured radiance data can be Abel-inverted 
to obtain the physically important emission coefficient distribution. In this letter an 
extension of the theory of Abel-type equations to the case of a non-zero constant 
absorption in the source is presented. Exact analytic formulae for the attenuated Abel 
equation are derived and discussed. 

Consider a cylindrical radiation source the cross section of which is of radius unity 
and is shown in figure 1. Assume that both the absorption and the emission coefficient 
distributions, p ( r )  and g( r )  respectively, are cylindrically symmetric inside the source 
and zero outside. Then the line-of-sight radiance measured by the detector is given by 

For the case at hand p ( r )  = p is constant and since a = x = ( r2 - y 2 ) ’ l 2  and b = (1 - y2)”’ 
we obtain 

~ ( y )  = 2  J ’ g ( r ) r  exp[-p(l -y2)1 ~ o s h [ ~ ( r ~ - y ~ ) ” ~ ] ( ~ * - y ~ ) - ” ~  dr. ( 1 )  

This is the attenuated Abel equation (Barrett 1982, 1984, Clough and Barrett 1983). 
Y 
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Figure 1. Cross section of experimental set-up. 

For the case of zero absorption ( 1 )  reduces to the usual Abel equation 

~ ( y )  = 2  J ' g ( r ) r ( r 2 - y 2 ) - 1 ' 2  d r  
Y 

for which three analytic inverses are available (Chan and Lu 1981, Whittaker and 
Watson 1948, Deutsch and Beniaminy 1982). If, however, p ( r )  is non-constant, no 
analytic inverse of the general equation is known. Recently, Clough and Barrett (1983) 
obtained an inverse of (1). If this equation is written as 

F ( y )  = 2  g ( r ) r  c o ~ h [ p ( r ~ - y ~ ) I ~ ~ ] ( r ~ - y ~ ) - ~ / ~  d r  (3) 

Fb) = I ( Y )  exp[p(l -Y2)'/21, 

where 

(4) 
then the inverse is given by 

g ' ( r )  = -( 1 , ' ~ )  I,' F ' ( y )  c o ~ [ p ( y ~ - r ~ ) ~ / ~ ] ( r ~ - y ~ ) - ~ ' ~  dy ( 5 )  

where the prime denotes differentiation with respect to y.  
In practice the radiance function is measured at a finite number of discrete points 

I ( y i )  ( i  = 1,2, . . . , N ) .  Thus, inversion of (3) by g'( r )  necessarily involves differentiat- 
ing experimental data, a process notorious for its enhancement of the random errors 
inherent in all measured data. A 200-fold amplification of such errors was found 
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(Deutsch and Beniaminy 1982) to occur in some cases due to differentiation when 
inverting the usual Abel equation, (2), with measured I(yi)  data. Although rather 
effective numerical methods for minimising error amplification are available (Minerbo 
and Levy 1969, Anderssen 1976, Deutsch and Beniaminy 1983, Deutsch 1983) it is 
preferable to eliminate the problem altogether by using inversion formulae which do 
not require differentiating I(y).  

g r r ( r )  = - ( l / . r r ) [~ (y )  cos[p(yz- rZ)”’](y’- r2)-’/21f. 

To derive such an inverse, we integrate (5) by parts to obtain 

+ ( l / v ) { - ~  5 ’  F(y)  sin[~(y2-r2)’’’]y(y2-rZ)-’ dy 
r 

(6) 

Since F (y )  is well behaved, we may write 

[F(y)  cos[p(yz - r’)’’’](yZ - rz)-’/’]; 

= F (  1) cos[p( 1 - r’)‘/’]( 1 - r2)-1’2+ F ( r )  cos[p( 1 - r’)”’][(yZ- rZ)-’/2]; 

- F (  r )  cos[p( 1 - r’)’/’]( 1 - r’)-’/’ 

=[F(l)-F(r)]cos[p( l  -rz)”2](l -r’)”’’-F(r) cos[p(1-r2)1/2] 

J r  

Substituting (7) into (6) and using the notation 

h(y) = F ( y )  C O S [ ~ ( Y ~ -  Y’) ’ /~]  

f (y)  = F(y){cos[p(yz- rZ)’/’]+p(y2- r’)’I2 sin[p(yZ- r2)”’]} (8) 

This is the required derivative-free inversion formula of the attenuated Abel equation, 
(3). The integrable singularity of the integrand at y = r can be taken care of by standard 
analytic methods (Davies and Rabinowitz 1975) or, if the integral is evaluated numeri- 
cally, simply by using a procedure not requiring the value of the integrand at the limit 
of integration, such as the adaptive three-point Gaussian method of Robinson ( 197 1). 

A third inverse of the attenuated Abel equation can be obtained by taking first the 
Fourier cosine transform of (3), changing the order of the two integrals and then 
performing an inverse Hankel transform. As shown by Clough and Barrett (1983) this 
yields 

grrr(r)  = (l/.rr) I,’ vJo(2.rrrv) du ~ 0 ~ ~ 2 . r r y [ v ’ + ( ~ / 2 . r r ) ’ ] ’ ~ ~ ) F ( y )  dy (10) lom 
where v is the Fourier-conjugate variable of y and Jo is the zeroth-order Bessel function. 
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Using the recurrence relations (Gradshteyn and Ryzhik 1980) 

J X Z )  = -Jl(z), JI ( 2 )  + ZJ; ( 2 )  = zJ,( z )  

where the prime denotes the derivative, we find 

J0(27rrv) = (27rrv)J0(27rrv). 
1 d d  

27r dr  dv  
-- - - 

Substitution in (10) yields 

g rrr (r )=- - -  4r3r dr  Iom F ( y )  dy lom [ i J o ( 2 n r v ) ]  c o ~ ( 2 7 r y [ v ’ + ( p / 2 7 r ) ~ ] ’ / ~ }  dv. 

Integrating the second integral by parts we obtain 

--!-- lom F ( y ) y  dy lom vJo(27rrv) ~in{27ry[v~+(p/27r)~]”~)  
2r2r dr 

x [ v 2  + (p/27r)’]-I/’ d v. 

The first term is identically zero, while for the second (Erdelyi 1954) 

lom vJo(27rrv) sin{27ry[ v2 + (p/27r)’]’/’}[ v’ + (p/27r)’]-’/’ d v 

= 27r cos[p(y’ - r’)’/’](y’- r2) -1 /2  Irl<y. 

Thus, we finally obtain 
I 

g”‘(r) = -(7rr)-’ - F ( y ) y  cos[p(y2- r2)’/’](y2- dy. ( 1 1 )  d“, I, 
Note that while here differentiation is required, it does not operate directly on the 

measured data but rather on a weighted integral thereof. Thus, grrr is less prone to 
error amplification than g’ but more so than g”. It should also be noted that since 
for p = 0 

the three inverses of the attenuated Abel equation, gr  of Clough and Barrett (1983) 
and g“ and grrr derived here, reduce to the three known inverses (Whittaker and 
Watson 1948, Deutsch and Beniaminy 1982) of the usual Abel equation 

gr  (r)  + -( 1 /  7r) I I’(y)(y’ - r2)-I/’ dy 

g”(r)+ - - ( I /T) [ I ( I ) - I (~ ) ] ( I  -r2)-’ /2  

W y )  =”f-(y) = F ( y )  = I ( Y ) ,  

r 

+ 1,’ [ I ( y )  - I(r)ly(y’- r2)-3/2 dy 

grIr(r)+-(7rr)-’- 5.’ I ( y ) y ( y *  - r2)-l” dy 

as expected. 
d r  
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Finally, as an illustration of the above results, consider the case of a constant 
emission coefficient throughout the source 

a r < l  
0 r > l .  

F(y)  is then given by (Clough and Barrett 1983) 

F(y)  = ( 2 a / p )  sinh[p( 1 -y2)'/']. 

Substitution in ( 1  1) yields 

g"'(r) = -(2a/p7rr) - sinh[p( 1 - ~ ~ ) ' / ~ ] y  
d r  5 '  r 

xcos[p(y2 - r'))'/'](y' - r2)-'l2 dy 

s inh[p(l-y 2 ) 1/2 ] ~ { ~ i n [ p ( y ~ - r ~ ) " ~ ] } d y .  d 
d r  

Integrating by parts and denoting w 2  = p2(y2 - r2) we obtain 

X [p2(  1 - r2) - a ~ ~ ] - ' / ~ w  sin w dw. 

Noting that 

- lom w f ( w )  sin w d o  = - w f ( w )  sin(wz) d o  

= ($ I o m f ( w )  cos(wz) dw 

and using a table of Fourier cosine transforms (Erdelyi 1954) we obtain 

gr"(r) = (2a /p3 . r r r ) (d /dr ) [ (d /dz ) ( . r r /2 )Jo[p (  1 - r2)'/2(z2 - l)''2]]z=~. 

Differentiating with reSpect to z, replacing JA first by -JI and then by its expansion 
in powers of (z2- 1 )  we obtain 

gr"(r) = - (a / r )  (d/dr)[i(l-  r2) -(p2/16)(1 - r2)'(z2- l ) + .  . 
which, for z = 1, yields g"'( r )  = a as required. The same result is obtained using g" 
of (9). 
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